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We present results from our experiments with the irregular reflection of shock waves 
in argon. We compare the data with the results we obtained numerically; the 
assumptions for the computational code were that we had unsteady, two- 
dimensional, compressible, inviscid, flow of a perfect gas. When precautions were 
taken to reduce the effects of the gas viscosity on the experimental data, we obtained 
very good agreement between the numerical and the experimental results for the 
ramp Mach number and the trajectory path triple-point angle, but there were 
discrepancies with the wave-angle data. The discrepancies were ascribed to the 
sensitivity of the data to both viscosity and to a singularity. We show that there are 
actually two weak irregular wave reflections, namely a classic Mach reflection (MR) 
and a new type, that we call a von Neumann reflection (NR). The structure of the 
NR is discussed in some detail, and so are the transition criteria for the various wave 
systems. 

1. Introduction 
The regular reflection (RR), and the irregular, or Mach reflection (MR), of a plane 

shock wave i at a rigid surface was first discussed comprehensively by von Neumann 
(1943). He assumed that all the waves were shocks which obeyed the Rankine- 
Hugoniot (RH) jump conditions, and all were of negligible curvature and 
thickness. Although the theory was developed for a general equation of state, he gave 
most attention to air which he assumed to be a perfect gas. 

He found that transition between RR and MR, denoted by, RR*MR, could be 
brought about by a continuous change in a system parameter, such as, for example, 
the corner angle 8, or the inverse strength of i, & = PJP,, where P is the pressure and 
the subscripts 0,1, refer to conditions upstream and downstream of i (figure 1).  When 
he studied the conditions for transition, he found it necessary to distinguish between 
a strong and a weak incident shock i, because & determined the nature of the 
transition criterion. Using a property of the polar diagram, he was able to give a 
rigorous definition of the boundary between strong and weak shocks. In the special 
case of a perfect gas, the critical value of & = E,,, depended only on the ratio of 
specific heats y = G,/C,, (table 1). However, an alternative definition which is 
physically more satisfactory has been given by Henderson & Siegenthaler (1980). In 
this case, i is strong if the flow downstream of its reflected shock T ,  is supersonic at, 
or near, transition, but it is weak when this flow is subsonic. Hence the strong/weak 
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FIGURE 1. Mach reflection caused by the diffraction of a plane shock over a compression corner. 
(a) Concave corner model. ( b )  Symmetrical wedge model designed to reduce the effects of viscosity 
particularly at the corner. i, incident shock; T ,  reflected shock; s, Mach shock; cd, contact 
discontinuity; 8, corner angle; x, trajectory path angle of wave triple point; N”,  shock Mach 
number of Mach shock along the ramp surface; PI angle of incidence of i with respect to the cd; 
/ls, wave angle of s with respect to the cd. 

boundary is a t  the sonic flow point. The two definitions are close together for a 
perfect gas (see tables 1 and 2). 

For weak shocks von Neumann concluded that transition took place at  the 
detachment point. Subsequently, Hornung & Taylor (1982), proposed instead that 
transition occurred at  the sonic point. Actually, these two criteria are too close 
together for present day experimental techniques to distinguish between them, so 
they will be referred to generically as the sonic/detachment point criterion. By 
contrast, when i was strong, von Neumann suggested that the mechanical 
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7 a Y f b 3 

li = 5,, 0.36385 0.433 17 0.46504 

e o  51.167 48.588 47.404 
1.5487 1.456 5 1.422 1 Mi 

TABLE 1.  Von Neumann separation conditions between strong and weak shocks 

6 - 7 9 Y H 5 7 

5, = E 0.303 75 0.37531 0.40855 
M' 1.6833 1.557 7 1.5122 
8" 53.32 49.626 48.388 

TABLE 2. Separation conditions between strong and weak shocks for M ,  = 1 
(after Henderson & Siegenthaler) 

equilibrium point was the correct criterion and it is now also called the von Neumann 
point. 

When his theory was compared with experimental data obtained from shock 
waves in gases, the agreement was generally satisfactory provided that i was a strong 
shock. This conclusion applied to both stationary and self-similar (pseudostationary) 
flows, for both regular and Mach reflections, (Bleakney & Taub 1949; Kawamura & 
Saito 1956; Henderson & Lozzi 1975, 1979; Henderson & Gray 1982; Hornung & 
Robinson 1982). For strong shock reflection in steady state flow, experiments showed 
clearly that the von Neumann point was the correct transition criterion (Molder 
1971; Pantazapol, Bellet & Soustre 1972; Henderson & Lozzi 1975, 1979; Hornung 
& Kychakoff 1977, Hornung, Oertel & Sandeman 1979). The same conclusion applied 
to certain self-similar systems such as twin re-entry concave corners (Henderson & 
Lozzi 1975), but not necessarily to all self-similar systems, particularly to a plane 
shock i diffracting over a single concave (compression) corner. In this last case, which 
has been extensively studied, experiment indicates that regular reflection apparently 
persists not only beyond the von Neumann point but even beyond the sonic/ 
detachment point, that is, into a region where, according to the von Neumann 
theory, RR is impossible. 

When i was a weak shock, the cited references again showed that the theory agreed 
well with experiment for RR, except that once more RR apparently persisted 
beyond the sonic/detachment point. For weak Mach reflection the theory almost 
always failed to agree with experiment. In fact if i is sufficiently weak the von 
Neumann theory has no physically realistic solutions for MR, (Henderson 1987) even 
though experiments show that MR-like phenomena do in fact exist. This suggests of 
course that the physical model of weak MR used by von Neumann is then incorrect. 
The apparent persistence of either RR or MR into regions of parameter space 
(y  x & x O ) ,  for which the theory has no physically realistic solutions is defined here 
to be the 'von Neumann paradox '. The term was first used by Birkhoff (1950, p. 24, 
1st edition) although in a more restricted sense than by us. 

The object of the present paper is to study the paradox with particular attention 
to the weak irregular reflection. First, we present the results of our experiments with 
weak shocks diffracting over concave (compression) corners (figure 1). In order to 
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keep the physics as simple as possible, we selected argon to be the compressible 
medium, which of course eliminated the effects of molecular vibration, rotation, and 
chemical reactions (Johannesen & Hodgson 1979). Secondly, we present the results 
of our computations of the flow fields of the experiments. For weak shocks, the flow 
downstream of an irregular wave system is by definition subsonic, so the von 
Neumann theory of it can only be applied to the immediate vicinity of the shock 
triple point. Our calculations, however, deal with the entire flow field. Like von 
Neumann, we assumed that the gas was perfect and inviscid and that the incident 
i, and Mach s, shock waves were of negligible thickness. In  spite of this, our 
calculations are more general, not only because we compute the entire flow field, but 
also because we only require the reflection r to obey the RH jump conditions. In 
particular, this allows r to be either a shock of negligible thickness and curvature, as 
assumed by von Neumann, or, for example a subcritical compression of finite 
thickness which seems to occur in some parts of some flow fields. 

Although the numerical data were found to agree with experiment within the 
limits of experimental error there were small systematic discrepancies. These were 
ascribed to shock-boundary-layer interaction effects arising from the viscosity of the 
argon. In order to test this idea some of the concave corner model experiments (figure 
iu) were repeated with symmetric wedge models (figure 16). These were designed to 
greatly reduce the shock-boundary-layer interaction at the concave corner. Some of 
the discrepancies then vanished completely, while others were substantially reduced. 

Finally we shall present evidence that there are two types of weak irregular 
reflection. One is a classical Mach reflection (MR) and the other is a new type whose 
reflected disturbance is not a shock in the region of its interaction with the 
incident/Mach shocks, but is a curved band of unsteady, self-similar, compressions 
of finite thickness. The flow downstream of the reflection is non-uniform near the 
interaction region. We shall discuss the transition conditions between the various 
phenomena. 

2. The experiments 
These were done at the University of Sydney in a conventional shock tube which 

has been described elsewhere (Henderson & Gray 1981). The concave corner model 
used is illustrated in figure 1 (a) .  The working section of the tube was filled with argon 
for all the experiments, so the ratio of specific heats was a constant, y = %. The 
inverse shock strength was also held constant for a particular series of experiments. 
The only variable parameter was the corner angle 8, and it was changed in discrete 
steps between the sonic/detachment point 8 = 8*, and the glancing incidence point 
8 = Oo, so 8* 2 8 2 0. Evidently, the values of the parameter set ( y ,  ti, 8) completely 
specified a particular flow field and its associated wave system at a given instant. By 
table 2, an irregular system was weak when ti > [,, = 0.30375, that is, when the 
shock Mach number Mt of i was Mi < 1.683. The incident wave speed was measured 
by piezoelectric transducers, and the wave systems were photographed with a 
conventional schlieren apparatus. 

between the reflected wave r ,  and the contact discontinuity cd, and 
p ,  between cd and the Mach shock s were measured from the photographs. The 
contact discontinuity and all the waves except i are curved near the triple point so 
there was some uncertainty about where to draw the tangents a t  this point for the 
purpose of angle measurement. Accordingly the experimental error was a little larger 
for these weak shock systems than they are for strong systems where the waves are 

The angle 
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FIGURE 2. Comparison of the von Keumann theory of weak Mach reflection with experiments in 
argon. y = 1, (&) = 0.406, ( M , )  = 1.47. (a ,  b )  Experimental data for concave corner models, see 
figure 1 (a). (c, d )  Experimental data for symmetrical (low viscosity effects) models, see figure 1 (b) .  
XT, von Keumann theory of weak MR; RN, region of von Keumann reflection (NR) where 8, > 
2 ~ .  0 ,  experimental data point. Experimental errors are negligible for 8, and k2.0" approximately 
for (PI, PA. 

either locally straight, or nearly so. We also measured the Mach number M,, of the 
Mach shock along the sloping ramp where i t  is locally a normal shock, and the 
trajectory path angle x of the triple point. The angle x was measured as indicated in 
figure 1, that is on the assumption that the trajectory path of the triple point passed 
through the corner. The uncertainty in the measurements of (M,, x) is significantly 
less than for the wave angles (/31,/3,) and we consider the former to be the most 
reliable and robust of all our data. The results for twelve experiments with an 
average (&) = 0.406, or (Mi) = 1.47, are presented in figures 2(a, b )  and 3(a,  b ) ,  and 
€or four experiments with (&) = 0.919, or ( M i )  = 1.035, are presented in figures 4 ( a )  
and 4(b). 
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FIQURE 3. Comparison of the finite difference code calculations of weak iregular reflections with 
experiments in argon. y = g, (&) = 0.406, ( M , )  = 1.47. (a, b)  Concave corner model experimental 
data. (c ,  d )  Symmetrical (low viscosity effects) model data. + , numerical data from the code using 
the same (7, &, 8) measured in the experiments. Experimental errors are negligible for 8, M ,  0.02, 
x& 1.25". Run numbers of the experiments in (a, b)  are 81, 82, 84, 85, 86, 87, 100. 

3. The computations 
3.1. The equations 

We considered the unsteady Euler equations and the continuity equation for the flow 
of a perfect, compressible, inviscid, gas in two dimensions, thus, 

ape Que +Up) + a(pve + wP) -+ 
at ax ax 

where p is the density u, v, the x and y velocity components, and e is the total energy 
per unit mass. The pressure P may be obtained from the equation of state, 

P = ( y - l )p (e -$ (u2+v2) ) .  (2) 
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3.2. The numerical method 
The code was developed at  the Lawrence Livermore National Laboratory (LLNL) 
and run on a Cray 2 computer. It uses a finite difference method based on a 
rectangular grid in conjunction with a higher-order extension of Godunov’s method 
of a type first introduced by van Leer (1979), and Colella & Woodward (1984). The 
method is accurate to second order in space and time, and captures shock waves and 
other discontinuities with minimal numerical overshoot and dissipation. Extensive 
use has been made of this method to compute unsteady shock reflections in gases 
involving complex interactions between discontinuities and smooth waves ; it gives 
good agreement with experiment (Woodward & Colella 1984; Glaz et al. 1985). 

The version of the method used by us is a single step unsplit method as described 
by Colella (1984). The numerical fluxes on the faces of the finite difference cells are 
all computed and differenced simultaneously rather than a pair at a time for each 
coordinate direction, as is done for the operator split version of the code (Colella & 
Woodward 1984). 

Naturally we wanted to obtain as accurate and detailed a picture as possible of the 
shock interaction region, so we explored two other techniques which were aimed at  
increasing our resolution in the neighbourhood of the reflection point and the triple 
point. One of them was local refinement of the finite difference mesh, which is a 
simplified form of the ideas in Berger & Colella (1987). At any given time the density 
of the finite difference cells was increased by an integer factor, called the refinement 
ratio, in each coordinate direction. While the size of the rectangular region which was 
subject to refinement was fixed, the refined region was moved in such a way that the 
incident and Mach shocks in the neighbourhood of the reflecting wall, remained 
centred on the refined region. The second technique involved tracking the incident 
shock i, using the algorithm of Chern & Colella (1987). In this case i was represented 
by a polygonal curve which moved through the finite difference mesh with the 
Rankine-Hugoniot jump conditions, providing the flux boundary conditions for the 
finite difference calculations. The coupling behind the tracked front was fully 
conservative and employed finite volume differencing on either side of the front in 
cells intersected by the tracked front. This enabled us to compute discontinuities 
which were captured on the finite difference grid which intersected the tracked front. 
In particular, we treated the transition to Mach reflection as the formation and 
propagation of a kink along the incident shock with the reflected wave and the slip 
line computed as captured structures on the finite difference grid. 

The use of both of these adaptive techniques improved the resolution of the finite 
difference calculation in several ways. Mesh refinement enabled us to focus the grid 
resolution on the small-scale structures in the neighbourhood of the reflection point. 
For example, when computing the transition between regular and Mach reflection, 
we were able to obtain Mach shocks whose height was only 4?4 of the maximum 
vertical height of the reflected wave. It would have been prohibitively expensive to 
resolve such structures on a uniform grid. Front tracking eliminated some dynamic 
range problems associated with finite difference calculations of shocks, particularly 
in the presence of discontinuities in the mesh spacing. 

3.3. The computations 

These were organized as though we were doing a typical series of experiments with 
a compression corner in a shock tube (figure la ) ;  that is, both (?,ti) were held 
constant while the corner angle 8 was varied in discrete steps. Then & was changed 
to a new value and the series was repeated. 
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Run no. 81 82 84 85 86 87 100 

8" 14.58 19.30 29.27 34.60 38.68 44.48 47.55 
0.403 0.414 0.406 0.409 0.405 0.400 0.400 
1.48 1.46 1.47 1.47 1.47 1.48 1.48 

5, 
211, 

NR NR MR MR MR M.R 

TABLE 3. Measured values of the input parameters for shock waves reflecting off concave 
corners in argon, y = 8, <f,) = 0.406, ( M , )  = 1.47 

Wave reflection NR 

la) 

M ,  l ' ' O l i "  1.05 x (deg.) ( @ ) 1 ; F j  

1 . l O F l  x (k.) ( d )  1 ; p - j  

0 

1 .o 
0 5 10 15 0 5 10 15 

(deg.1 e (dcg.) 
(4 

M ,  1.05 

1 .o 
0 5 10 15 0 5 10 15 

(deg.) 0 (deg.1 

FIQURE 4. Comparison of the finite difference code calculations of weak irregular reflections with 
experiments in argon. y = 8, (6,) = 0.919, (MJ = 1.035. (a, b)  Concave corner model experimental 
data. (c, d )  Symmetrical (low viscosity) model data. For other symbols and information see the 
caption to figure 3. 

The first series was designed to validate the code by direct comparison with 
experiment. The gas was assumed to be argon with a constant ratio of specific heats, 
y = #. In order to make the comparison as accurate as possible, we used exactly the 
same input data ( y ,  ti, 0 )  in each computation as had been used in the experiments, 
(table 3). We calculated (M, ,x) ,  and then compared the results with experiment 
(figures 3a and 3 b )  We also calculated (p,,p8) from the von Neumann theory and 
compared these results with experiment (figures 2a and 2 b ) .  

The second series was for (&) = 0.919, or (MJ = 1.035, and there were four 
experimental points to compare with our calculations as shown in figures 4(a) and 
4 (b).  The von Neumann theory of MR has no physically acceptable solutions for this 
series. The third series was for & = 0.889737, or Mi = 1.0483, for which we had one 
experimental point with 8 = 10'. For all three series i was a weak shock in the sense 
defined by both von Neumann and Henderson t Siegenthaler (tables 1 and 2). 

Example of the field calculations corresponding to experiments with run numbers 
85 and 81 are presented in figures 5 and 6, and in figure 7 we present our results for 

= 0.889737 and 8 = 10". The figure show the density contours for the entire flow 
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FIGURE ~(u-c). For caption see page 80. 

field in each case, as well as enlargements of the density, pressure, and entropy 
contour plots in the interaction zones. The 'ripple' noticeable in most of the 
enlargements is due to a reflection condition we imposed at the top boundary, 
consequently, it is no more than an artefact of the calculations. It is not present for 
the timesteps in figures 5 (a ) ,  6 (a ) ,  7 (a) .  Plots are also shown of the trajectory of the 
triple point. For each timestep, we plotted the location of the topmost point on the 
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FIQURE 5. Finite difference calculations for the contours for the conditions of the weak Mach 
reflection with run number 85 in argon. y = $, 6, = 0.409, Mi = 1.47, 6'= 34.60'. (a) Density 
contours for the entire field. ( b )  Enlargement of density contours in shock interaction region. ( e )  
Enlargement of pressure contours. ( d )  Enlargement of entropy contours. ( e )  Trajectory of the triple 
point in the (2, y)-plane. 
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tracked incident shock for which the post-shocked state differed from the state behind 
the incident shock. Also plotted as a solid line is a linear least-squares fit to the triple- 
point trajectory defined by these points. 

The assessment of the numerical accuracy of the solutions obtained here is 
substantially simplified by the self-similarity of the problem. If the solution is self- 
similar, we expect that running the calculation for longer times should be the same 
as refining the grid. In fact, this is rigorously correct at  the discrete level in the case 
of a uniform grid, in the sense that the solution depends on the spatial a.nd temporal 
increments Ax, Ay, At only in the ratios A x l h t ,  AylAt. Our general approach has been 
to use the finest mesh that we could afford, and to monitor self-similarity by 
comparing the results at different times. The numerical triple-point trajectories are 
examples of such comparisons ; our plots of the triple-point locations computed by 
the algorithm at every timestep is equivalent to producing the triple-point locations 
for a continuum of mesh spacings. The convergence of the discrete triple-point 
trajectories to a straight line indicates that our numerical calculations are converging 
to a self-similar solution to the equations. We have also performed other diagnostics, 
such as comparing contour plots of the solution at  different times, and have seen 
similar convergence of the wave patterns. 
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FIQURE 6. Finite difference calculations for the contours for the conditions of the von Neumann 
reflection with run number 81 in argon. y = $, 6, = 0.403, M ,  = 1.48, 0 = 14.58'. For these 
conditions the weak Mach reflection theory requires that > .$K. For other information see the 
caption to figure 5. 
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13 = 10'. For other information see the caption to figure 5. 
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4. Discussion 
4.1. Comparison of the numerical results with experiment 

As already explained the most robust comparison was with the (Ma, x) data (figures 
3a, b, 4a, b) .  The agreement of the numerical data + , with the experimental data 0 ,  
is generally good for the (Mi) = 1.47 results shown in figures 3 ( a )  and 3 ( b ) .  Indeed 
the agreement is within the limits of experimental error and computational 
uncertainty. However in spite of this, there is a small systematic discrepancy. The 
results shown in figures 4(a) and 4(b) are for much weaker incident shocks (Mi) = 
1.035 and here also the agreement is good. In this case the data is sparse and there 
is no sign of a systematic discrepancy. 

We formed the hypothesis that the discrepancy evident in figures 3 (a )  and 3 ( b )  was 
due to the viscosity of the argon, leading to shock-boundary-layer interactions. 
Another viscous effect was due to the (negative) displacement height of the boundary 
layer along the ramp. It was estimated to be only 0.02 mm a t  5 cm downstream of 
the Mach shock, which made i t  immeasurably small. Our calculations, of course, were 
based on the assumption that the gas was inviscid. The flat plate forming the 
upstream part of the corner was 30 cm long and the Reynolds number there was 
about Re x 4 x lo6. A new series of models were designed to reduce the effects of 
viscosity, a typical one is illustrated in figure l ( b ) .  While this design virtually 
eliminated shock-boundary-layer effects a t  the corner, there were still some residual 
sidewall boundary-layer effects. The same numerical data is compared with the 
experimental data from these symmetrical or ‘low viscosity effects’ models in figures 
3(c, d and 4c, d ) .  Generally, agreement is now excellent with no signs of any 
systematic discrepancy. Thus when precautions are taken to minimize the effects of 
viscosity, the numerical results agree with experiment. We conclude that these 
results validate the code. 

4.2. Comparison of the won Neumann theory of MR with experiment 
The von Neumann theory has physically acceptable solutions of MR for the (Mi) = 
1.47 series, but not for the weaker series (Mi) = 1.035. It is impossible to calculate 
(Ma,  x) from this theory, so it is necessary instead to calculate the wave angles (PI, 
p,) to compare with experiment. The data for the concave corner models are 
presented in figures 2(a) and 2(b). Although the theory approaches agreement with 
experiment near transition to  RR,  8 --t 8*, there is an increasingly large discrepancy 
in the other direction as 0 becomes smaller. For the experimental data it will be 
noticed that the reflected wave angle p1 is always such that p1 < &; therefore by 
experiment the reflected wave r is never inclined forward of the triple point ; i t  must 
always be either a backward facing shock p1 <in, or, at most, a normal shock, 

The same comparisons are made with the symmetrical model data in figures 2 ( c )  
and 2 ( d ) .  For < in it  will be noticed that the discrepancies are reduced by about 
half compared with the concave corner data (figures 2a and 2b). This demonstrates 
the sensitivity of the angle data to viscous effects and indeed to  small variations in 
the system parameters. Apart from this observation, the conclusions are the same as 
before. These considerations suggested the following hypotheses to us. 

(a)  When p1 < in, for the von Neumann theory, then i t  will agree with experiment, 
provided that the effects of viscosity can be sufficiently reduced in the experiments. 

(b)  When p1 > $t, for the theory, that  is when the reflected wave is required to be 
inclined forward of the triple point, then the theory will not agree with experiment. 

= ;n. 
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(c)  When the theory has no physically acceptable solutions, for example the 
solutions may be unreal, or may require the reflected wave to be an expansion shock, 
then here also it will not agree with experiment. 

If the hypotheses are true then there must be at least two irregular reflections. 
These are a classical Mach reflection as described by the von Neumann theory but 
restricted to p, < in, and to solutions that are otherwise physically realistic, and 
another system which we will name a ‘von Neumann reflection ’ (NR), which exists 
when the theory fails. Clearly the transition condition for MR + NR, is 

p -1 
1 - ,n. (3) 

According to the hypotheses the experiments listed in table 3 for the (Mi )  = 1.47 
series, and with run numbers 81-84 are von Neumann reflections while 85-100 are 
weak Mach reflections. This may be verified by inspection of figure 2 using table 3 
and equation (3). All of the experiments in the (Mi) = 1.035 aeries are von Neumann 
reflections. A schlieren photograph of a weak MR from run number 85 is presented 
in figure 8. A similar photograph of an NR for which the theory requires > is 
presented in figure 9 (run number 81). Finally a photograph of an NR for which the 
theory has no real solutions is presented in figure 10. 

4.3. Comparison of the von Neumann theory of MR with the numerical data 
We shall now test hypothesis ( a )  of the previous section. We shall make an indirect 
comparison with experiment. Since we have already validated the code by showing 
that the numerical data from it are in good agreement with experiment (figures 3 and 
4), then by comparing the von Neumann theory with the code data it may be 
determined indirectly if the theory agrees with experiment. For example the pressure 
ratio P,/Po across the incident and reflected shocks can be calculated for the values 
of (y ,  Ei, 0)  corresponding to experiments 85-100 using both the code and the von 
Neumann theory. The results are shown in table 4 and they agree within 1 YO. We find 
that this comparison is robust (not sensitive to small variations in the system 
parameters or to viscosity). The streamline direction angle 6, of the flow downstream 
of the reflected shock can be found in the same way (table 4). In this case the code 
displays more sensitivity which causes some uncertainty in 6,. Nevertheless the 
results do bracket the von Neumann data. Therefore the data shown in table 4 
supports hypothesis (a) .  

4.4. The structure of the von Neumann reflection NR 
Hypotheses (b )  and ( c )  will be considered here together. An MR will be replaced by 
an NR whenever the von Neumann theory either requires that PI > & or when it has 
no physically acceptable solutions. At first glance the photographs of an NR (figures 
9 and 10) appear to be those of a typical MR. However careful examination reveals 
some important differences. Thus the incident and Mach shocks appear to be a single 
wave with a smoothly turning tangent near the triple point, whereas an MR (figure 
8) has a slope discontinuity between those two shocks at  the triple point. Furthermore 
the contact discontinuity has a quite sharp appearance in the MR, but a fuzzy 
appearance in NR as though it was a distributed shear layer rather than a shear 
discontinuity. The contours plotted from the code calculations show a similar 
behaviour. For example the detailed entropy contours for the MR of experiment 85 
(figure 5 d )  display a concentrated band of entropy emanting from the triple point, 
and a clearly defined entropy jump across the reflected shock. The curvature of the 
Mach shock near the triple point is also noticeably large. On the other hand, the 
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FIGURE 8. Schlieren photograph of a weak Mach reflection over a concave corner model in 
argon for run number 85. y = 8, Si = 0.409, Mi = 1.47, 8 = 34.60. 

FIGURE 9. Schlieren photograph of a von Neumann reflection over a concave corner model in argon 
for run number 81. In this case the theory of weak MR requires that 8, > in. y = g, ti = 0.403, 
N{ = 1.48, e = 14.580. 
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FIGURE 10. Schlieren photograph of a von Neumann reflection over a concave model in argon for 
which Mach reflection has no physically acceptable solutions. y = 4, g, = 0.889, M, = 1.05, 6 = 10'. 

Run no. 

eo 

51 

Ml 
P,/Po data from computer code 
PJpO data from von Neumann theory 
4 data from computer code 
4 data from von Neumann theory 

85 

34.60 
0.409 
1.47 
4.0984 
4.1191 

17.03-19.01 
17.90 

86 

38.68 
0.405 
1.47 
4.6397 
4.6167 

12.93-14.7 1 
13.61 

87 

44.48 
0.400 
1.48 
5.4612 
5.4347 

6.62-8.25 
7.12 

100 

47.55 
0.400 
1.48 
5.888 
5.9315 

3.14-4.78 
3.58 

TABLE 4. Comparison of the von Neumann theory with the computer code 

contours corresponding to the NR of experiment 81 (figure 6 d )  display a smoothly 
distributed band of entropy with no sign of an entropy jump across the reflection 
even though it obeys the RH conditions. We presume that the jump is too small to 
be resolved by the calculations. The curvature of the Mach shock is now much 
smaller than that shown in figure 5 ( d ) ,  and the triple point has now become 
somewhat indefinite.? We infer that the reflection is not a shock but a smoothly 

t In that event, we calculated x at the point where the leading edge of the reflection first 
encountered i. 
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distributed self-similar compression in the region where it interacts with the 
incident/Mach shocks. Evidence of the self-similarity in the region is found in the 
linear character of the triple point trajectory except for the immediate vicinity of the 
corner (figure 6e) .  

The conclusions remain the same when the incident shock is so weak that there are 
no real solutions to the von Neumann theory (hypothesis ( c ) ) .  In  the example shown 
in figure 7 (d ) the smoothness of the field is evident and so also is the finite curvature 
of the Mach shock. It is also evident in figure 7 (c) for the pressure contours how the 
reflection steepens into a shock as it retreats from the incident/Mach shock 
interaction zone. 

4.5. Behaviour of the irregular rejections near their transition p1 = in 
Suppose that initially we have a weak MR, then it follows by hypothesis (a) that 
p1 < in, the reflected wave is a shock and there is a well-defined triple point. The 
streamline deflection angle 8, across the reflected shock can be calculated from (Ames 

~~ 

1953), - 1) - (P2/Pl - 1) 
S,(P2) = 6, +tan-' 

PJPI +P2 

where p2 = (y-  l)/(y+ i),  and H, is the free-stream Mach number between the 
incident and reflected shocks. Now the reflected wave becomes a normal shock as the 
system approaches the transition /?+in, and at this condition Pz = P,, say. Then 
with (y,H,,S,) held constant we may obtain from (4) without difficulty, 

as 
2 - (P2-Pn)-k 
ap2 

(5) 

So the streamline direction changes rapidly with pressure as transition is approached, 
MR-tNR. This partly explains why the pressure data is so robust while the 
streamline deflection data is so sensitive (table 4). These quantities are of course 
ultimately functions of the system parameters (y ,  &, 8). The wave angles (p , ,  p , )  also 
show marked sensitivity as MR --f NR, (figure 2) which is evidently, a t  least in part, 
another manifestation of the singularity (5) since they are also functions of the same 
parameters. However, the experimental data for (p , ,  p , )  shown in figure 2 also show 
marked sensitivity to the effects of viscosity whereas the (M,, x) data do not (figure 
3). Indeed the experiments indicate that sensitivity to viscosity is the dominant 
effect for most of the range of PI < +?c data in figure 2, the sensitivity due to the 
singularity is presumably mostly confined to the vicinity of the transition point 

A dynamical mechanism for the formation of the distributed reflected compression 
in NR is suggested by the way in which the three-shock theory fails. Given the triple- 
point trajectory path in MR one can use the theory to calculate the entire family of 
reflected shocks that satisfy P, < P,, and assuming that MR solutions exist in the NR 
parameter space then these shocks must be forward facing, p1 > in. If we now 
override this condition and impose the requirement that  the reflected shocks must be 
backward facing in order to conform with experiment (figure 2), then we find that the 
flow direction S,, downstream of the Mach shock diverges from that 6, downstream 
of the reflected shock (figure 11) .  This suggests that  in NR the flow behind the Mach 
shock acts like a distributed sink of fluid which weakens the reflection and turns its 
direction of propagation. The result is that  i t  becomes a distributed compression 
where it is near the incident/Mach shocks (compare figures 5 and 7). The self-similar 

p -1 
1 - 27c. 
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FIQURE 1 1 .  The streamline divergence near the shock triple point. 

velocity vector normal to the leading edge of the reflection is either sonic or subsonic; 
we do not have enough evidence to make a definite determination. But as already 
noted the compression does steepen into a shock as it retreats from the incident/Mach 
shocks. The distance over which this happens is typically quite small and is only just 
detectable in the results shown in figure 7 ( c ) ,  which is one of our most finely resolved 
numerical studies of a very weak NR system. We expected the distance to scale with 
the divergence of the streamline angles near the interaction region, which is itself 
typically quite small. It will be noted that there are large curvatures of the reflection 
in this region, just as there is in MR near the transition MR -+ NR. This is most 
evident in the pressure contours (figure 7 c )  where the direction of the reflection turns 
sharply in the vertical direction as it approaches the incident/Mach shocks. Finally 
we remark that the mechanism is both inviscid, and compatible with self-similarity. 

4.6. Conditions at transition 
4.6.1. MR NR 

This transition has already been discussed and its criterion which is given by 
equation (3 ) ,  p1 = in has been noted. When it may be assumed that the reflection 
system is propagating in a perfect gas then (3 )  can be more conveniently expressed 
in terms of the system parameters (y, &, 0) as follows (Henderson 1987), if x = sin2 
wa, where w, is the angle of incidence of the incident shock to the surface when the 
reflected wave is a normal shock and I9 a t  this point is 8, = in-wa, then 

where 
c ,x2+c1x+co = 0, (6) 

(7 a) 

(7b) 

c, = 2 7 [ ( Y +  I ) +  (7- 1) ti1 (1 -5r)  [(Y+ I)+ ( Y + 3 )  5113 

C1= -{(?+ 1)'(37+ 1) + (y+ 1) (y3 + 3 y 2 + 3 7 - 3 )  & 
+ (2y4 + 3y3 - 97' - 157 + 3) 5; + (r4 + 27'- 4y2+ 1w- 1) @, 

c, = [(y+1)+(y-1)t6i3,  (7 c )  

and where the negative branch of (6) provides the root of physical significance. 

4 FLM 213 
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FIGURE 12. Computation of the regular-irregular transition point for weak shock waves. (a )  Data 
selected from either figures 3 ( b )  or 3 ( d )  for MR+RR, with a linear curve of best fit. ( b )  
Computational data for NR-t RR, for y = $, 5, = 0.889737, Mi = 1.0483,B = 10' with a quadratic 
correlation curve. The curve is terminated at the point where tanx is a minimum, i.e. 0 !Z 30.2'. 

4.6.2. MR-tRR 
In  this case the results from the code and the experiments show that the non- 
dimensional height tan x of the Mach shock approaches zero (its transition point) 
linearly as 8 increases. This is demonstrated in figure 12(a), which is a replot of the 
MT data from figure 3 ( d ) .  After extrapolating to the value of 8 for which tanx = 0 
we get 8 %  4% which is approximately equal to 8 = 50.744', obtained for the 
sonic/detachment point calculated from the von Neumann theory. 

4.6.3. NR+RR 
The data for NR is replotted from figure 4 ( d )  in figure 12(b ) .  We obtained a least- 
squares quadratic fit to the data, which means, of course, that tan x approaches zero 
quadratically with increasing 8 in the case of NR. The fit to the data was cut off a t  
the minimum computed value of tanx,  this was at 8 x 30.2" compared to the 
sonic/detachment value of 8 = 30.4173'. 

We see that for the inverse transition RR-tNR,  there is initially a very slow 
growth in the height of the Mach shock (tanx) with decreasing 8. This may help to 
account for the apparent persistence of RR into the NR parameter space. In other 
words, the height of the Mach shock may be too small for it to be optically resolvable 
until 8 has become a few degrees smaller than the sonic/detachment transition angle 
8*. Certainly there is no sign of the persistence in figure 12 ( b )  where the fit terminates 
almost exactly a t  8*. 

5. Conclusions 
(1) Our code calculations of the flows in weak, irregular, reflections were based on 

the continuity, and Euler equations for the unsteady, two-dimensional, compressible, 
inviscid, flow of a perfect gas, where all the waves were required to satisfy the 
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RankineHugoniot jump conditions. The comparison between the numerical and 
the experimental data for the ramp shock Mach number M,,  and the triple-point 
trajectory path angle x, gave excellent agreement especially when precautions were 
taken to reduce the effects of viscosity on the experimental data (figures 3 and 4). It 
was concluded that the comparison validated the code. 

(2) It is impossible to calculate (N,, x) from the inviscid von Neumann theory of 
weak MR in order to compare with experiment. So we calculated the wave angles (p,, 
p,) to make the comparison and it revealed large discrepancies (figure 2). The 
experiments showed firstly that the reflected wave was never inclined forward of the 
triple point, PI < in, and secondly that the data was sensitive to viscous effects. We 
concluded that the von Neumann theory would agree with experiment (or very 
nearly so) if the following conditions were met, 

(a )  The theory satisfied, 
( b )  The theory provided real solutions, and did not require there to be any 

expansion shocks in the wave system. 
( c )  Precautions were taken to minimize the effects of viscosity on the experimental 

data. 
Further evidence to support the validity of the von Neumann theory under these 

conditions was provided by comparing it with the numerical results. In particular we 
found that the theory agreed within 1 %  with the code for the pressure P, 
downstream of the reflected shock. It also agreed with the streamline direction data 
6, (table 4), although these data showed sensitivity to variations in the parameters 
( y ,  ti, 8) especially when +in. This was traced to a singularity at  this condition of 

< in. 

the form, 

which explained why the pressure data was robust while the angle data was sensitive. 
On the other hand, the experimental data showed that the angle data (p,,p,) was 
sensitive to the effects of viscosity, while the (Mn, 2 )  were insensitive (robust). 

(3) When the von Neumann theory failed, it was concluded that the weak Mach 
reflection was transformed into a new type of irregular reflection which we called a 
von Neumann reflection (NR). In this system the incident and Mach shocks appear 
to form a single wave with a continuously turning tangent. The reflection is a 
smoothly distributed and apparently self-similar pressure disturbance near its 
interaction region with the incident/Mach shocks, but it steepens into a shock as it 
retreats from them. 

This work was performed under the auspices of the US Department of Energy at  
the Lawrence Livermore National Laboratory under contract W-7405-Eng-48. 
Partial support under contract W-7405-Eng-48 was provided by the Applied 
Mathematical Sciences Program of the Office of Energy Research. 
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